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A computational algorithm is constructed for  solution of  the problem of freezing of  water-saturated porous 

media with account for the dependence of  the temperature of  the phase transition of  pore moisture on the 

pressure and the concentration of  a dissolved impurity. The mathematical  model  of  the process considered 

is based on a generalized formulat ion o f  the well-known Stefan problem. Examples  convey results of  

computation. 

The behavior of freezing-melting water-saturated media is mainly determined by phase transitions of pore 

moisture. These transitions are accompanied by migration and diffusion of dissolved impurities. In what follows 

we consider the dependence of the freezing temperature of the pore moisture on the pressure and the concentration 

of a dissolved impurity on the interface of the melted and frozen zones. The mathematical model of the process 

considered is based on a generalized formulation of the well-known Stefan problem [ 1 ]. 

1. The basic relations are the heat-conduction equation for the solid-phase zone 

OT O2T 
- as x ~ (0, ~ (t))" (1)  

Ot Ox 2 ' 

the equations of heat conduction, piezoconductivity, and diffusion of the impurity dissolved in water for the liquid 
phase: 

OT O2T 
-- all q - -  x E (~ (t), L)" (2) 

Ot Ox 2 ' 

�9 O p  d 2 p ,  
--  r - -  x E (~ ( t ) ,  L ) "  ( 3 )  
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OC D 02C 
-- - -  x E (~  ( t ) ,  L)  ( 4 )  
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On the interface ~(t) of the melted and frozen phases, a moisture discontinuity is considered and the 

balance of the energy, the mass of water, and the mass of the impurity dissolved in the water is described by the 
following equations: 

'~s ~x  _ -/]-liq -~x + = qPic m d---~' (5) 
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Let the porous medium considered have a constant temperature,  concentrat ion of the dissolved impurity,  

and pressure in pores at the initial moment:  

T (x, 0) = T O , x E 10, L]  ; (9) 

C ( x , O ) = C  o ,  x ~  [0, L ] ;  (10) 

p (x, 0) = Pa ,  x ~ [0, L I .  (11) 

On the left boundary  the water  is assumed to cool instantaneously to the constant tempera ture  To: 

T ( O , t ) =  T c ,  t > 0 ,  

and on the right boundary  it is assumed that there are no inflows of heat,  concentrat ion of the impurity,  and  water  

mass at all: 

OT 
- 0 ,  x = L ,  t > 0 ;  (12) 

Ox 

OC - - = 0  x = L  t > 0 ;  (13) 
Ox ' ' 

O__pp = 0  x = L  t > 0  (14) 
Ox ' ' " 

2. We consider a computational algorithm suitable for effective numerical realization of boundary-va lue  

problem (1)-(14) and based on a modified method of counter  factorization [2, 3 1. 

On the segment [0, L]  the quasiuniform grid ~h = {xi = x i - 1  + hi, i = 1, n; x0 = 0; h i = b h i - l ,  i = 1, n} is 

constructed. Its steps form an increasing geometric progression with the denominator  b > 1. Here  the parameters  

of the grid n, hi ,  and b are chosen so that Xn = L.  The  time step is calculated in the course of solution of the 

formulated problem. 
It is assumed that approximate values of the solution of the initial problem ~ire found up to the time t = 

t j - t .  To  find the solution of the problem for the time t = t h we set up a correspondence between Eqs. (1)-(14) and 

their purely implicit f ini te-difference analogs 

V 

T i -  T i T i+ l  - T i T i -  T i _  1 
~ i - -  - hi + hi , i = j +  1, n -  1; (15) aliq T 1 

7 ~ i w  

V 

Pi -- Pi Pi+l  -- Pi Pi -- P i - I  

tcr hi+ 1 h i 
, i = j +  1, n -  1 ;  (16) 
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v 
Ci - Ci - Ci+l - Ci Ci - Ci - I  i = j + 1, n - 1 ; (17) 

~ii Dr hi+ 1 hi ' 

v 
T i -  T~i Ti+l - Ti T i -  Ti-I (18)  

lii asr hi+l hi , i =  1 , j -  I .  

The discrete analog of conjugation condition (8) is written in the form 

Tj = -- c~Cj -- ~ (pj -- P a ) "  (19) 

We set up a correspondence between Stefan condition (5) and its discrete analog, which has the second 

order  of approximation with respect to r: 

v v v v 

- - - T j - I - T j  2mq hy (20) "Is T 1 hiT/-' + ;t, r/- lhj_,T/-2 + '~'liq Tj hJ +IT]+I + ~[liq hj = Pic ./- 

Using the recurrence relations 

Cj+ 1 = ( l - a ~ + l ) C  ] + f l~+ l  , Pj+I = ( l  P P - '~j+l) Pj + ~ ; + l ,  

T j +  1 = (1 - r ~ j + l )  Tj + ~;+I  , Tj-I = ( l  -- 0~;) Tj + ~ ; )  

the purely implicit finite-difference analog of Eqs. (5)-(7) 

2s T ] -  Tj_ 1 + T]+ 1 - Tj mqpichJ 
hj ~liq hj+ l - T ' 

( 2 1 )  

(22) 

P]+I  -- P] = -- (I Picl  m hy (23) 

C/+ 1 - C~ h. 
- D  hj+l = C / ~ r ,  

and the discrete analog (19), excluding hi~z, we obtain a quadratic equation for T): 

[1 + r/y (2s/X~; + ~.liqcrj+l) ] + 

+ - [1 + r/y (2sba; + ~.liqCrj+l) ] + 

+ P -- r/P a -- t/y (2sbfl; +/~liqfl;+l) sb(2; + '~liqa]+ 1 -- 
aj+ 1 

c ; T } 
- mqpicDaj+ 1 [1 + r/y (,lsba + 21iqaj+l) ] T / +  

P 
aj+ 1 

+ + 

(24) 
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+ m q  P i c D a j +  1 r/Pa -- 
g+' l ,7 -7-- + + 
a.i+ 1 

- mq  PicDafl)C+ 1 } = o ,  (25)  

where 

(Pw -- Pic)/.t  y =  
P 

aj-+ 1 Pic Pwqkliq 

The smaller root of Eq. (25) is taken as the next approximation Tj. Then the unknown pj and Cj are found 

correspondingly: 

pj = 
P 

a/.+ 1 

(26) 

C.i = _ T j  + r I ( p i  - Pa) (27) 

The boundary conditions are put in correspondence with their discrete analogs. 

For realization of the obtained system at each time level, i.e., at each fixed value of the index./ ,  the iteration 
process will be organized in view of its nonlinearity.  The order of operations is as follows. 

Step 1. k -- 0 (a counter of iterations) is assumed and the initial approximation of the time step t 0 (usually,  

r 0 = r) is specified. 
Step 2. The simplest linearization of the system of equations (15) - (19)  is done: 

k+!  v k+ l  k+l  k+l  k+l  

Ti - Ti Ti+ 1 - Ti Ti+ 1 - T i -  1 
~ i - - -  , i = j +  l , n -  1; 

aliq ~ hi+ 1 hi 

k+l  v k+l  k+l  k+l  k+l  

Pi - - P i  Pi+l -- Pi Pi+l -- Pi-1 
7ii tcr -- hi+ 1 hi , i = j +  l , n -  1; 

k+l  v k+l  k+ l  k+ l  k+ l  

Ci -- Ci Ci+l - Ci Ci+l - Ci-1  

~i Dr  - hi+ 1 hi 
, i = j +  l , n -  1; 

k+l  v k+l  k+ l  k+ l  k+ l  

Ti -- Ti Ti+l - Ti Ti+l - T i - I  
~i a s 7; nLi+l all , i =  1 , ] -  1 

For its solution the method of counter factorization is used, in which the solution is sought with the help of the 

recurrence relations mentioned above: 

k + l  T k + l  
T i =  (1 - - a i + l )  Ti+ 1 + f l ~ l  , i = j -  1 , 0 ;  

k+l  _ k+l  
T i (1 ~ T = - - a i )  Ti-1 + f l i  , i = j +  1, n; 

k+l  k+l  

p i =  (1 - - ~ )  Pi - I  + f l ~ ,  i = j +  1, n ;  

(28)  

76 



T 
7.8 

5.5 

3.5 

1.0 

-1.2 
02 0.4 0,6 0.8 1.O x 

P 
8 

6 

4 

2 

0 ' O." 4 ' ' ' 0.2 0.6 0.8 f.O x 

6 

2 
I I 

0 0.2 0.4 
I I I 

0.6 0.8 l.O x 

l,O 

0 

T 
-1.2 

5 
i i i , 

5~5 66.7 100.0 15~5 f~7~ 

' 6  

Fig. 1. A case of adequate  operat ion of the model. T O -- 10~ Tc = - I~ kliq 

= 8.5- 10 -16, D = 1.45.10 -9.  x, m; t, days.  
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Fig. 2. An example  of supercooling. T O = 3~ Tc = - 3 ~  kliq 
D =  1.45-10 - 9  . 

= 8 .5 -  10 -16 

k + l  /C /,+1 #C 
C i = ( 1 - a  ) Ci_l  + i , i = j +  1, n .  

S tep  3. With the use of obta ined relations (25)-(27) ,  the next  approximat ion  of the tempera ture ,  p ressure ,  
k + l  k + l  k + l  

and  concentra t ion  of the dissolved impuri ty  on the interface of the mel ted and  frozen phases  Tj , Pj  , Cy is 

calculated. 

Step 4. T h e  next  approximat ions  of the tempera ture  in the frozen zone and  the tempera ture ,  p ressure ,  and  

concentrat ion in the mel ted zone are  found from counter-factorizat ion formulas  (28). 
k + l  

Step 5. The  next  approximat ion of the t ime step T is de te rmined  from Eq. (20). 

Step 6. If the error  of the i teration process is 

k + l  
T 
~ - - 1  ___e, 

T 
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where e is a specified small number  larger than 0, then k is increased by unity and step 2 is s tar ted  again. Otherwise,  

it is assumed that passage to the next  time level has occurred. 

3. Numerical  calculations following the computational algorithm described were carr ied out for the following 

parameters  of the process studied: m --- 0.2; Pa = 105 Pa; Co = 0.003 g/ l i ter ;  r /= 0 .765 .10-7 ;  a -- 66.7; q = 3.34. 105; 

Csk = 1920 J / ( k g - K ) ;  Cw = 4190 J / ( k g ' K ) ;  Cic = 2000 J / ( k g . K ) ;  Pw = 1000 kg/m3; Pic -- 910 kg/m3; Psk = 2000 

kg/m3;2w = 0.58 W/  (m - K) ; ;tic = 2.23 W / ( m - K ) ;  ;tsk = 2 W / ( m . K ) ; / ~  = 0.001 Pa.sec;  Kf--  2 .109 Pa; L = 1 m; hi 
= 10-4; kli q = 8.5- 1 0 - 1 5 - 8 . 5  �9 10 -23 m2; D = 1.45.10 -9  m2/sec; e -- 10 -5. 

As can be seen from the graphs (Figs. l ,  2) two different  freezing regimes exist. Th e  following notation is 

used in the figures: 1) temperature ,  ~ 2) equilibrium temperature,  ~ 3) pressure,  MPa; 4) concentra t ion,  g / l i ter ;  

5) in ter face / j ( t ) ,  m; 6) temperature  on the interface between the frozen and melted zones, ~ In Fig. 1 one can 

see results of the computation that show that the present  front model describes adequate ly  the occurring process. 

Figure 2 shows the so called "supercooling" effect. Here,  the equi l ibr ium-temperature curve calculated with account 

for the pressure and concentrat ion distribution lies above the local- temperature distribution curve. In the freezing- 

front model a supercooling effect is observed for regimes corresponding to strong cooling, when the freezing front 

moves so rapidly that because of the substantial difference in the diffusion coefficient and the thermal  diffusivity 

and in the piezoconductivity and the thermal diffusivity in the melted zone the salt concentra t ion and the pore 

pressure decrease  more rapidly with distance from the front than the local tempera ture  increases.  A comparison 

with results of [2 ], where only the temperature  and the concentrat ion were calculated, and  of [4 ], where the 

temperature  and the pressure were calculated, shows that the effect of the pressure and the concentra t ion of the 

impurity in water  on the temperature  of the phase transition is independnet .  

N O T A T I O N  

x, coordinate;  t, time; T, temperature,  C, mass concentrat ion of the impuri ty in water; p, pressure;  m, 

porosity;  /~, viscosity of water;  q, specific heat  of the phase transi t ion of water; D, diffusion coefficient;  ~, 

coordinates of the interfaces between the zones; c, heat-capacity coefficient; p,  densi ty coefficient; 2, thermal  

conductivity; x, piezoconductivity;/r permeabili ty of the melted ground; Kf, modulus of compressibil i ty of water; 

a ,  7/, coefficients of decrease of the phase-transit ion temperature;  hi, steps of the space grid; ~h, space grid; n, 

number  of nodes of the space grid; L, length of the calculated area; r,  step of the time grid; j, number  of the node 

at which the phase transition occurs; a T, fiT, aCi, tiC,i a f ,  fir, factorization coefficients; k, i teration number ;  Pa, 

atmospheric pressure;  Tc, boundary  condition for the temperature  at x = 0; COs = (l - m ) C s k ,  Osk  + mCioOic; C/gli q = 

(1 -- m)cshosk + mCvdOw; A s ~- (1 -- m);tsk + rr~ic; ;tliq = (1 -- m)~.sk q- tr/~w; aliq = Aliq/Cpliq; as = As~COs. Subscripts: 
sk, skeleton; ic, ice; w, water. 
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